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Abstract

The modeling of epidemic spread has evolved significantly to incorporate the complex
interplay between disease transmission and social dynamics. This comprehensive survey
examines the state-of-the-art in epidemic diffusion models that integrate social and media
effects, encompassing information diffusion, opinion dynamics, behavioral changes, and the
role of traditional and social media in shaping epidemic outcomes. We analyze ∼ 50 repre-
sentative studies spanning network-based, mean-field, agent-based, and multiplex modeling
approaches, highlighting how awareness, information quality, and social influence mecha-
nisms affect disease transmission dynamics. Our analysis reveals that local awareness often
proves more effective than global information in epidemic control, while media effects can
both enhance and hinder containment efforts depending on information quality and timing.
We identify key themes including information-behavior feedback loops, network topology
effects, and the critical role of behavioral thresholds in determining intervention effective-
ness. Finally, we propose a novel modeling framework that incorporates community-based
homophily and data-informed media effects, providing a foundation for future research in
this rapidly evolving field.

1 Introduction

The COVID-19 pandemic has dramatically highlighted the critical importance of understanding
how social dynamics, information spread, and media effects influence epidemic transmission.
Traditional epidemiological models, while foundational, often fail to capture the complex be-
havioral adaptations that occur during disease outbreaks. Individuals modify their behavior
based on information they receive, their risk perceptions, and social influences from their net-
works. These behavioral changes, in turn, affect disease transmission patterns, creating intricate
feedback loops that can fundamentally alter epidemic dynamics.

The integration of social and media effects into epidemic models represents a significant
paradigm shift in epidemiological modeling. Unlike classical compartmental models that assume
fixed transmission rates and contact patterns, these enhanced models recognize that human
behavior is dynamic, adaptive, and heavily influenced by information availability and social
context. This evolution in modeling approaches has been driven by several key observations:
first, that information about disease prevalence can lead to protective behaviors that reduce
transmission; second, that social networks play crucial roles in both information dissemination
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and disease spread; and third, that media coverage—both traditional and social—can signifi-
cantly impact public health outcomes.

The landscape of epidemic modeling with social dynamics encompasses multiple method-
ological approaches. Network-based models explicitly represent the contact structure through
which diseases spread while simultaneously modeling information flow. Mean-field approaches
provide analytical tractability by assuming well-mixed populations while incorporating aggre-
gate behavioral responses. Agent-based models offer detailed individual-level representations
that can capture heterogeneous behaviors and complex social interactions. Multiplex network
models recognize that information and disease may spread through different network layers with
varying topologies and dynamics.

This survey provides a comprehensive analysis of the current state-of-the-art in epidemic
modeling with social and media effects. We examine forty carefully selected studies that repre-
sent the breadth and depth of current research, analyzing their methodological approaches, key
findings, and implications for public health policy. Our analysis reveals several critical insights:
the paramount importance of information-behavior feedback mechanisms, the complex role of
network topology in shaping both disease and information spread, and the nuanced effects of
media interventions that can either enhance or hinder epidemic control efforts.

The structure of this survey reflects the multifaceted nature of the field. We begin with a
detailed analysis of the methodological landscape, examining the various modeling frameworks
employed and their relative strengths and limitations. We then explore the key thematic areas
that emerge from the literature: information-behavior feedback mechanisms, network dynamics
and social influence, media effects and information quality, and intervention effectiveness. Each
section synthesizes findings across multiple studies while highlighting important methodological
considerations and policy implications.

Our contribution extends beyond synthesis to propose a novel modeling framework that
addresses several gaps identified in the current literature. Specifically, we develop a mathematical
framework that incorporates community-based homophily—allowing for like-minded individuals
to preferentially interact—while integrating data-informed media effects that can operate at
both global and community levels. This framework provides a foundation for future research
that can better capture the polarization and echo chamber effects observed during recent health
crises.

The implications of this research extend far beyond academic interest. Understanding how
social dynamics and media effects influence epidemic spread is crucial for developing effective
public health interventions. The COVID-19 pandemic demonstrated that even well-intentioned
public health measures can fail if they do not account for social and psychological factors that
drive individual and collective behavior. Models that integrate these factors provide essential
tools for policymakers seeking to optimize intervention strategies and improve epidemic pre-
paredness.
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2 Methodological Landscape

The integration of social dynamics and media effects into epidemic models has spawned a rich
methodological landscape characterized by diverse approaches, each with unique strengths and
limitations. Understanding this methodological diversity is crucial for appreciating both the
current state of the field and its future directions.

2.1 Network-Based Models

Network-based models represent the most intuitive approach to modeling epidemic spread with
social dynamics, as they explicitly represent the contact structure through which both diseases
and information propagate. Among the surveyed studies, twenty-two employed network-based
approaches, making this the most prevalent methodological category.

The fundamental insight underlying network-based models is that both disease transmission
and information diffusion are inherently network processes. However, these processes may occur
on different network topologies with distinct characteristics. [17] demonstrated this concept using
a hybrid model that combines susceptible-infectious-recovered (SIR) dynamics with Bass model
information diffusion on both fully connected and scale-free networks. Their findings revealed
that precautionary behaviors reduce disease spread, with hub nodes playing particularly critical
roles in scale-free networks.

The choice of network topology significantly influences model outcomes. Scale-free net-
works, characterized by heavy-tailed degree distributions with highly connected hubs, appear
frequently in the literature. [24] utilized scale-free networks to model media-driven behavioral
changes, finding that media coverage can reduce transmission rates, though the effectiveness is
highly context-dependent. Small-world networks, which combine high clustering with short path
lengths, have also been extensively studied. [28] employed small-world and spatial networks to
investigate social distancing effectiveness, concluding that such interventions are only effective
when implemented by sufficiently cautious individuals.

Static versus dynamic network models represent another important methodological distinc-
tion. While many studies assume fixed network structures, some researchers have explored how
contact patterns evolve during epidemics. [41] developed a model where contact networks adapt
based on information about infection status, finding that such adaptive contacts effectively
rescale disease infectiousness and alter epidemic dynamics. This adaptive approach captures the
realistic phenomenon of individuals reducing contacts with perceived high-risk individuals.

Multiplex network models represent a sophisticated extension that recognizes diseases and
information may spread through distinct network layers. [16] pioneered this approach by mod-
eling epidemic spread on a physical contact network while awareness spreads on a virtual social
network. Their analysis revealed that the interplay between network topology and awareness
diffusion can create complex phase transitions, including the emergence of "metacritical" points
where the system behavior changes qualitatively.

The validation of network-based models presents unique challenges. Many studies rely on
simulation-based validation using synthetic networks with known properties. However, some
researchers have incorporated empirical network data. [23] utilized Barabási-Albert networks
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parameterized with real-world social network characteristics to model COVID-19 spread, finding
that network structure significantly slows disease spread and that superspreader nodes play
disproportionate roles.

2.2 Mean-Field Models

Mean-field models offer analytical tractability by assuming well-mixed populations while incor-
porating aggregate behavioral responses to epidemic conditions. Sixteen of the surveyed studies
employed mean-field approaches, often in combination with other methodological frameworks.

The power of mean-field models lies in their ability to provide analytical insights into sys-
tem behavior while maintaining computational efficiency. [14] developed an influential mean-
field model that couples awareness diffusion with epidemic dynamics, assuming that awareness
spreads through both local and global information channels. Their model demonstrated that
awareness reduces outbreak size but does not significantly affect the epidemic threshold, a finding
that has influenced subsequent research.

Mean-field models are particularly well-suited for studying equilibrium conditions and sta-
bility analysis. [15] employed ordinary differential equations to model the bidirectional coupling
between social effort and infection dynamics, revealing how social effort affects equilibrium
disease prevalence. Similarly, [2] used mean-field game theory to model voluntary quarantine
strategies, showing how risk perception shapes epidemic waves and peak sizes.

The assumption of population homogeneity inherent in mean-field models can be relaxed
through structured approaches. [3] developed a mesoscopic mean-field model that structures the
population by risk traits, allowing for heterogeneous behavioral responses while maintaining an-
alytical tractability. Their model revealed complex dynamics including plateaus and oscillations
resulting from behavioral feedback.

Multiplex extensions of mean-field models have proven particularly valuable. [50] devel-
oped a three-layer mean-field model encompassing disease, behavior, and information dynamics.
Their analysis identified "over-reacting" nodes as crucial for epidemic control, highlighting the
importance of behavioral heterogeneity even within mean-field frameworks.

2.3 Agent-Based Models

Agent-based models (ABMs) provide the most detailed representation of individual behavior and
social interactions, with fifteen studies in our survey employing this approach. ABMs excel at
capturing behavioral heterogeneity, complex decision-making processes, and emergent collective
phenomena that arise from individual interactions.

The strength of agent-based modeling lies in its ability to represent diverse individual behav-
iors and decision-making processes. [10] developed an agent-based model incorporating opinion
dynamics through DeGroot and Widrow-Hoff learning mechanisms, coupled with SEIR epi-
demic dynamics. Their model demonstrated that social media can either help or harm epidemic
containment, depending on the quality of information and the strength of social influence mech-
anisms.

Agent-based models are particularly valuable for studying game-theoretic interactions. [33]
employed evolutionary game theory within an agent-based framework to model imitation-based
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information diffusion and risk perception. The model revealed how misperception and disinfor-
mation can significantly affect the effectiveness of social distancing measures.

The validation of agent-based models often involves comparison with real-world data or
alternative modeling approaches. [34] conducted a comprehensive comparison of agent-based and
differential equation models across multiple network topologies, finding that network structure
significantly influences diffusion speed, epidemic peak, and overall disease burden. Their work
highlighted the importance of methodological choice in determining model predictions.

Some agent-based models incorporate sophisticated behavioral mechanisms. [12] developed
a model with adaptive forward-looking behavior, where agents anticipate future epidemic con-
ditions when making behavioral decisions. This approach captures the realistic phenomenon of
individuals taking precautionary measures based on expected rather than current risk levels.

2.4 Hybrid and Multiplex Approaches

The complexity of epidemic-social dynamics has led many researchers to adopt hybrid approaches
that combine multiple methodological frameworks. Twenty-one studies in our survey employed
hybrid models, reflecting the field’s recognition that no single approach can capture all relevant
aspects of these complex systems.

Hybrid models often combine analytical mean-field approaches with detailed network or
agent-based components. [1] developed a multiplex model that combines M-model opinion dy-
namics with epidemic spread, using both analytical and simulation-based approaches to study
how opinion trends affect vaccination behavior and epidemic thresholds.

The integration of different temporal scales represents another important dimension of hybrid
modeling. [9] developed a multiplex model that explicitly considers different timescales for
information and epidemic spread, using both analytical and simulation approaches to study how
information velocity affects disease prevalence and epidemic thresholds.

Some hybrid models combine multiple epidemic modeling frameworks. [36] developed a
multiplex model that integrates both SIR dynamics and awareness diffusion, using analytical
phase diagram analysis combined with extensive simulations to study how heterogeneity and
awareness affect epidemic spreading on multiplex networks.

2.5 Social Media and Information Quality Models

A significant subset of models focuses specifically on the role of social media and information
quality in epidemic dynamics. These models recognize that modern information environments
are characterized by multiple competing sources with varying credibility, reach, and temporal
patterns.

Social media models typically incorporate both positive and negative information flows. [10]
developed an agent-based framework coupling opinion dynamics with epidemic spread, consid-
ering three information sources: global government information, social media information, and
neighbor observation. Their analysis revealed that social media can increase public awareness
when high-quality information dominates early pandemic stages, but fabricated news can signif-
icantly increase infection rates.
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The heterogeneity of information processing capabilities has emerged as a crucial factor. [47]
proposed an aware-susceptible-infected (ASI) model capturing individual differences in informa-
tion literacy. Their findings demonstrated that highly literate individuals are more sensitive
to information adoption, and epidemic suppression only occurs when the ability to transform
awareness into protective behaviors exceeds critical thresholds.

Multiple information types create complex competitive dynamics. [45] studied positive and
negative information co-evolution on two-layered networks, finding that accelerating positive
information dissemination effectively restrains epidemic spreading. Interestingly, accelerating
negative information dissemination can also provide benefits when positive information spreads
poorly, highlighting the complex nonlinear effects of information competition.

Government policy interventions in information environments represent another important
modeling dimension. [46] developed a multi-layer model incorporating government propaganda,
encouragement, and intervention policies across information, behavior, and disease layers. Their
analysis revealed that coordinated multi-layer policies achieve optimal disease control, with
the combination of encouragement and intervention policies being most effective for two-layer
implementations.

3 Information-Behavior Feedback Mechanisms

The relationship between information availability and behavioral response represents one of the
most critical aspects of epidemic dynamics with social effects. Understanding these feedback
mechanisms is essential for predicting epidemic outcomes and designing effective interventions.

3.1 Types of Information-Behavior Feedback

The literature reveals several distinct types of information-behavior feedback mechanisms, each
with different implications for epidemic dynamics. Information-to-behavior feedback represents
the most direct mechanism, where individuals modify their behavior based on available informa-
tion about epidemic conditions. [32] modeled this through awareness-driven social distancing,
finding that awareness reduces total infections and eradication time, though it may not signifi-
cantly affect epidemic thresholds.

Bidirectional feedback mechanisms capture the more complex reality that behavior changes
can also influence information availability and quality. [10] implemented bidirectional coupling
between opinion, behavior, and epidemic dynamics, demonstrating that social media can create
complex feedback loops that either enhance or undermine epidemic control efforts. Their model
revealed that the quality of information and the strength of social influence mechanisms are
crucial determinants of outcomes.

Behavioral feedback to infection represents another important mechanism, where collective
behavioral changes alter disease transmission patterns. [15] modeled social effort as a dynamic
variable that responds to infection levels while simultaneously affecting transmission rates. Their
analysis revealed multiple equilibria and complex dynamics that depend on the strength of the
effort-infection coupling.

Competition between different information sources creates particularly complex dynamics.
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[11] developed a multiplex model where competing opinions about epidemic severity spread
through social networks while simultaneously influencing protective behaviors. Their findings
demonstrated that opinion competition can create multiple stable states and complex threshold
effects.

3.2 Behavioral Thresholds and Tipping Points

A critical insight from the literature is that behavioral responses often exhibit threshold effects,
where small changes in information or risk perception can trigger large changes in collective be-
havior. These thresholds can create tipping points that fundamentally alter epidemic dynamics.

[28] identified crucial behavioral thresholds in their study of social distancing effectiveness.
They found that interventions must exceed a minimum threshold of implementation and behav-
ioral compliance to be effective, with sub-threshold interventions potentially worsening outcomes
by creating false confidence without sufficient risk reduction.

The concept of "over-reacting" individuals has emerged as particularly important. [50] iden-
tified that individuals who respond disproportionately to risk information play crucial roles in
epidemic control, often serving as early adopters of protective behaviors that can prevent larger
outbreaks. This finding challenges traditional assumptions about optimal behavioral responses
and suggests that some degree of "overreaction" may be beneficial from a population health
perspective.

Threshold effects also emerge from the interaction between different behavioral mechanisms.
[42] demonstrated that the coupling between opinion dynamics and epidemic spread can create
discontinuous phase transitions with abrupt changes in system behavior. These transitions
represent points where small changes in model parameters or initial conditions can lead to
dramatically different epidemic outcomes.

3.3 The Role of Risk Perception

Risk perception serves as a crucial mediator between information availability and behavioral
response. The literature reveals that individuals’ perception of risk, rather than objective risk
levels, primarily drives behavioral changes.

[2] developed a game-theoretic model where risk perception governs voluntary quarantine
decisions. Their analysis revealed that risk perception can create complex wave patterns in
epidemic dynamics, with periods of high concern followed by behavioral relaxation that can
trigger subsequent waves.

The heterogeneity of risk perception within populations creates additional complexity. [50]
modeled heterogeneous risk perception and its effects on information diffusion and behavior
change. They found that diversity in risk perception can either enhance or hinder epidemic
control, depending on the distribution of risk attitudes and the quality of available information.

Misperception and disinformation represent critical challenges in risk perception. [33] in-
corporated misperception into evolutionary game dynamics, finding that even small amounts of
misinformation can significantly undermine the effectiveness of behavioral interventions. This
finding highlights the crucial importance of information quality in epidemic control efforts.
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3.4 Temporal Dynamics of Information-Behavior Coupling

The temporal evolution of information-behavior coupling presents important considerations for
both modeling and policy. Behavioral responses to information are not instantaneous, and the
strength of coupling may vary over time due to factors such as media fatigue, habituation, or
changing risk perceptions.

[7] specifically studied media fatigue effects, where prolonged exposure to epidemic-related
media coverage leads to diminishing behavioral responses. Their model demonstrated that media
fatigue can create complex epidemic patterns with multiple peaks, as behavioral relaxation allows
for disease resurgence.

The timing of information availability relative to epidemic phases also matters significantly.
[24] found that media interventions are most effective when implemented early in epidemic
progression, but can also provide benefits after the main epidemic wave by preventing secondary
outbreaks.

Different information sources may have varying temporal patterns of influence. [19] modeled
multiple information sources and routes, finding that the relative importance of different infor-
mation channels changes over the course of an epidemic. Local information sources may be more
influential during early epidemic phases, while global media coverage becomes more important
as epidemics expand.

3.5 Asymptomatic Transmission and Information Dynamics

The presence of asymptomatic individuals creates unique challenges for information-behavior
feedback mechanisms, as these individuals may transmit disease without providing visible cues
that trigger behavioral responses. Understanding these dynamics has become particularly im-
portant following COVID-19 experiences.

[43] developed a coupled disease-awareness model incorporating asymptomatic infection on
multiplex networks. Their analysis revealed that asymptomatic individuals significantly com-
plicate epidemic control by reducing the effectiveness of contact-based awareness mechanisms.
When individuals cannot observe infection status in their neighbors, the local information chan-
nels that prove most effective in other contexts become substantially weakened.

The detection and isolation of asymptomatic cases emerges as a critical intervention point.
[29] demonstrated that systematic detection of asymptomatic individuals can fundamentally al-
ter epidemic management effectiveness. However, such detection requires sophisticated surveil-
lance systems that may not be available in many contexts.

Asymptomatic transmission also affects the temporal dynamics of information-behavior cou-
pling. [21] found that social distancing effectiveness is substantially reduced when high propor-
tions of transmission occur through asymptomatic individuals, as the visible cues that typically
drive behavioral changes are absent.

The role of media and public health communication becomes more critical in contexts with
substantial asymptomatic transmission. [38] analyzed an SQEIAR model with media coverage
and asymptomatic infection, finding that media effects must be stronger and more sustained to
achieve equivalent epidemic control when asymptomatic transmission is prevalent.
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4 Network Dynamics and Social Influence

The structure and dynamics of social networks play fundamental roles in determining how both
diseases and information spread through populations. Understanding these network effects is
crucial for developing effective intervention strategies and predicting epidemic outcomes.

4.1 Network Topology Effects

Different network topologies create distinct patterns of disease and information spread, with
important implications for epidemic dynamics and control strategies. The literature reveals that
network structure can be as important as biological factors in determining epidemic outcomes.

Scale-free networks, characterized by heavy-tailed degree distributions with highly connected
hubs, appear frequently in epidemic modeling due to their resemblance to many real-world so-
cial networks. [17] demonstrated that in scale-free networks, hub nodes play disproportionately
important roles in both disease and information spread. The targeting of hub nodes with inter-
ventions can achieve disproportionate benefits, but the same hub structure that makes targeted
interventions effective also makes the system vulnerable to rapid spread when protective behav-
iors are inadequate.

Small-world networks, which combine high local clustering with short global path lengths,
create different dynamics. [34] conducted extensive comparisons across network types, finding
that small-world networks tend to create intermediate diffusion speeds between regular lattices
and random networks. The high clustering in small-world networks can create local echo cham-
bers that may either amplify or dampen information effects, depending on the local consensus.

The emergence of multiplex network models has revealed the importance of considering differ-
ent network layers for disease and information spread. [16] pioneered this approach by modeling
epidemic spread on physical contact networks while awareness spreads on virtual social net-
works. Their analysis revealed that the relationship between these network layers—particularly
the degree of overlap between physical and virtual connections—critically determines epidemic
outcomes.

Regular lattice structures, while less realistic for social networks, provide important theoreti-
cal insights. [10] used regular lattices to study opinion dynamics and behavioral changes, finding
that the local structure of regular networks can create spatial patterns in both information and
disease spread that differ qualitatively from more complex network topologies.

4.2 Adaptive Network Dynamics

Recognition that network structure itself may change during epidemics has led to increased inter-
est in adaptive network models. These models capture the realistic phenomenon that individuals
modify their social contacts based on epidemic conditions and available information.

[41] developed one of the influential models of adaptive contact networks, where individu-
als can modify their contact patterns based on information about the infection status of their
neighbors. Their analysis revealed that adaptive contacts effectively rescale disease infectious-
ness, potentially increasing the epidemic threshold and reducing overall disease prevalence.
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The mechanisms driving network adaptation can vary significantly. [49] modeled asymmetric
activity levels where individuals may increase or decrease their social activity based on epidemic
conditions and available information. Their model demonstrated that the balance between
different adaptive responses can create complex temporal dynamics with multiple phases of
network restructuring.

Adaptive networks also interact with information quality and availability. [12] developed a
model where individuals make forward-looking decisions about social contacts based on antici-
pated future epidemic conditions. This anticipatory behavior can create complex feedback loops
where network changes influence information availability, which in turn drives further network
adaptations.

4.3 Social Influence Mechanisms

Social influence represents a crucial mechanism through which individual behavioral changes
propagate through populations. The literature reveals several distinct types of social influence,
each with different implications for epidemic dynamics.

Imitation-based influence represents one of the most commonly modeled mechanisms. [31]
studied how imitation of vaccination behavior spreads through social contact networks, finding
that imitation can increase overall vaccination coverage but may also create dangerous clusters
of non-vaccinated individuals. The spatial distribution of behavioral choices emerges as a critical
factor in determining population-level outcomes.

Opinion dynamics provide another important form of social influence. [1] employed M-
model opinion dynamics to study how opinions about vaccination spread through multiplex
networks. Their analysis revealed that opinion exchange can create complex coupling between
social dynamics and epidemic spread, with opinion trends significantly affecting vaccination rates
and epidemic thresholds.

Social reinforcement mechanisms can amplify the effects of individual behavioral choices.
[26] modeled social reinforcement in vaccination decisions, finding that reinforcement can raise
epidemic thresholds and create optimal points where population-level outcomes are maximized.
However, reinforcement can also create polarization effects where populations split into distinct
behavioral groups.

The strength of social influence relative to individual decision-making represents a crucial
parameter. [10] systematically varied the strength of social influence in their opinion dynamics
model, finding that moderate levels of social influence tend to optimize epidemic control, while
both very weak and very strong influence can lead to suboptimal outcomes.

4.4 Community Structure and Homophily

Real social networks often exhibit community structure where individuals preferentially connect
to others with similar characteristics or opinions. This homophily can significantly affect both
disease and information spread patterns.

While explicit modeling of homophily is limited in the current literature, several studies have
addressed related concepts. [25] studied awareness diffusion among "unequals" in simplicial
complexes, finding that heterogeneity in social status or influence can significantly affect both
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awareness spread and epidemic dynamics. Their results suggest that interventions may need to
account for social stratification to be maximally effective.

The concept of opinion-based homophily appears in several studies of opinion dynamics. [11]
modeled competing opinions that can lead to opinion-based clustering, where individuals with
similar opinions preferentially interact. This clustering can create echo chambers that amplify
opinion effects and reduce exposure to alternative viewpoints.

Community detection and intervention targeting represent important applications of com-
munity structure understanding. [36] studied how community structure in multiplex networks
affects the optimal targeting of awareness interventions, finding that community-aware interven-
tion strategies can achieve significantly better outcomes than strategies that ignore community
structure.

The temporal evolution of community structure during epidemics represents an important
area for future research. While most current models assume static community structure, real
communities may strengthen or weaken based on epidemic conditions and the evolution of opin-
ion landscapes.

4.5 Awareness Diffusion Mechanisms

The mechanisms through which awareness spreads through social networks have profound im-
plications for epidemic dynamics. Unlike simple information transmission, awareness involves
cognitive and emotional processing that can create complex nonlinear effects.

Local versus global awareness sources create different network dynamics. [14] demonstrated
that locally spreading awareness can completely stop disease transmission when infection rates
are below critical thresholds, while global awareness primarily affects outbreak size without
changing epidemic thresholds. The effectiveness of local awareness is amplified when social com-
munication networks overlap with potential infection networks, particularly in highly clustered
networks.

The heterogeneity of awareness acquisition and processing within networks creates addi-
tional complexity. [5] studied heterogeneous self-awareness distribution effects, finding that
awareness heterogeneity suppresses epidemic outbreaks while degree heterogeneity enhances epi-
demic spreading. The correlation between node degree and self-awareness critically affects these
dynamics, with positive correlations enhancing awareness benefits and negative correlations po-
tentially undermining epidemic control.

Time-varying awareness mechanisms capture the realistic phenomenon that awareness levels
fluctuate over epidemic timescales. [20] proposed a UAU-SIS model with time-varying self-
awareness and behavioral responses, finding that while time-varying behavioral responses effec-
tively suppress epidemic spread by increasing epidemic thresholds, time-varying self-awareness
primarily reduces epidemic scale without affecting thresholds.

Multiplex awareness diffusion models recognize that awareness may spread through different
network channels than disease transmission. [18] developed models where awareness spreads
through time-varying activity-driven networks while disease spreads through static networks.
Their analysis revealed that temporal changes in awareness network topology can hinder aware-
ness spread, directly affecting epidemic thresholds and emphasizing the importance of maintain-
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ing stable communication channels during epidemics.

5 Media Effects and Information Quality

The role of media—both traditional broadcast media and social media platforms—in shaping
epidemic dynamics has emerged as a crucial area of research. Understanding how different media
types and information quality affect public health outcomes is essential for developing effective
communication strategies during health crises.

5.1 Traditional Media vs. Social Media

The literature reveals important distinctions between traditional broadcast media and social
media in their effects on epidemic dynamics. Traditional media typically provides more cen-
tralized, authoritative information, while social media enables more decentralized, peer-to-peer
information sharing with variable quality control.

[24] specifically focused on incorporating traditional media data into epidemic models, using
real media coverage data to drive behavioral changes in scale-free networks. Their analysis
revealed that media coverage can significantly reduce transmission rates, but the effectiveness
depends heavily on the timing and intensity of coverage. Early, sustained media attention tends
to be most effective, while delayed or intermittent coverage may have limited benefits.

Social media effects present more complex dynamics due to their interactive and decentralized
nature. [10] modeled social media as enabling both information sharing and opinion formation,
finding that social media can either enhance or undermine epidemic control efforts. The key
determinant is the quality of information circulating through social networks and the strength
of social influence mechanisms relative to authoritative information sources.

The interaction between different media types creates additional complexity. [45] developed
a model that explicitly considers the co-evolution of multiple information types across different
media channels. Their analysis revealed that the competition between different information
sources can create complex dynamics where the overall effect of media depends on the relative
credibility and reach of different channels.

Mass media effects often operate at different scales than social media effects. [27] studied
how mass media influences epidemic dynamics in multiplex networks, finding that mass media
can raise epidemic thresholds and inhibit disease spread by creating population-wide awareness.
However, the effectiveness of mass media may decrease over time due to habituation effects.

5.2 Information Quality and Misinformation

The quality of information circulating during epidemics has profound effects on public health
outcomes. High-quality, accurate information can enhance protective behaviors and improve
epidemic control, while misinformation can undermine public health efforts and worsen epidemic
outcomes.

[10] explicitly modeled the effects of misinformation by incorporating both accurate and
inaccurate information into their social media dynamics. Their analysis revealed that even
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relatively small amounts of misinformation can significantly undermine epidemic control efforts
by reducing the adoption of protective behaviors or promoting harmful behaviors.

The mechanisms through which misinformation spreads differ from those governing accu-
rate information. [11] modeled competing opinions about epidemic severity, finding that false
or exaggerated information can spread more rapidly than accurate information under certain
conditions. This rapid spread of misinformation can create persistent effects that are difficult
to counteract even with subsequent accurate information.

Disinformation campaigns represent a particularly dangerous form of low-quality informa-
tion. While few studies in our survey explicitly modeled coordinated disinformation efforts,
the broader literature on information quality suggests that coordinated campaigns can be more
damaging than organic misinformation due to their strategic targeting and amplification.

The credibility of information sources emerges as a crucial factor. [19] studied multiple infor-
mation sources and routes, finding that the relative credibility of different sources significantly
affects their influence on behavioral changes. Highly credible sources can counteract misinforma-
tion even when they have smaller reach, while low-credibility sources may have limited beneficial
effects even when they provide accurate information.

5.3 Media Fatigue and Temporal Effects

Prolonged exposure to epidemic-related media coverage can lead to diminishing returns in be-
havioral response, a phenomenon known as media fatigue. Understanding these temporal effects
is crucial for optimizing media intervention strategies.

[7] provided one of the most detailed studies of media fatigue effects, developing a model
where media effectiveness decreases over time due to habituation. Their analysis revealed that
media fatigue can create complex epidemic patterns with multiple peaks, as initial media-driven
behavioral changes weaken over time, allowing for disease resurgence.

The timing of media interventions relative to epidemic phases significantly affects their ef-
fectiveness. Early media attention can help prevent or reduce epidemic peaks by promoting
early adoption of protective behaviors. However, premature media attention before significant
disease prevalence may lead to rapid fatigue, reducing responsiveness when media attention is
most needed.

Intermittent media attention patterns can create complex dynamics. [44] studied how vari-
able media coverage affects epidemic spreading in complex networks, finding that consistent,
moderate coverage tends to be more effective than intense but sporadic coverage. This finding
has important implications for media strategy during prolonged epidemics.

The concept of "media waves" that correspond to epidemic waves represents an important
temporal pattern. Media attention often peaks during epidemic upswings but decreases dur-
ing downturns, potentially leading to premature behavioral relaxation that can contribute to
subsequent epidemic waves.

5.4 Targeted vs. Broadcast Media Strategies

The literature reveals important distinctions between broadcast media strategies that target
entire populations and more targeted approaches that focus on specific groups or communities.
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Broadcast media strategies achieve broad reach but may lack specificity for different popula-
tion segments. [27] studied mass media effects that operate uniformly across populations, finding
that such strategies can be effective for raising overall awareness and creating population-wide
behavioral changes. However, uniform strategies may be less effective when populations have
heterogeneous risk profiles or information needs.

Targeted media strategies can achieve higher effectiveness by tailoring messages to specific
population segments. While explicit modeling of targeted strategies is limited in the current
literature, several studies suggest their potential benefits. [50] found that heterogeneous risk
perception can either enhance or hinder epidemic control, suggesting that media strategies that
account for this heterogeneity might achieve better outcomes.

The role of opinion leaders and influencers represents a form of targeted media strategy. [50]
identified "over-reacting" nodes that play disproportionate roles in epidemic control, suggest-
ing that targeting such influential individuals with media interventions could achieve amplified
effects.

Community-based media strategies that account for social network structure represent an-
other promising approach. [36] studied how community structure affects the optimal targeting of
interventions, finding that community-aware strategies can significantly outperform community-
blind approaches.

5.5 Media Function Formulations

The mathematical representation of media effects in epidemic models requires careful consider-
ation of how media coverage translates into behavioral changes. The literature has developed
several functional forms for capturing these relationships, each with different implications for
model dynamics.

Exponential media functions of the form fm(I) = e−mI capture the intuitive relationship
where media coverage increases with infection levels, leading to exponentially decreasing trans-
mission rates. [8] first proposed this formulation within an SEI model, demonstrating that such
functions can create complex epidemic dynamics with multiple equilibria.

Rational media functions such as fm(I) = 1
1+mI2

or fm(I) = 1
1+mI have been widely adopted

for their mathematical tractability and realistic representation of saturating media effects. [48]
and [40] utilized these formulations to model psychological effects during disease outbreaks, find-
ing that the specific functional form significantly affects epidemic thresholds and final outbreak
sizes.

Linear media functions of the form fm(I) = 1 − mI provide the simplest representation
while often producing the most pronounced effects on epidemic dynamics. [30] demonstrated
that linear functions can delay epidemic peaks and reduce peak infection levels more effectively
than more complex formulations, making them attractive for policy-oriented modeling where
clear, interpretable effects are desired.

Local media effects require network-specific formulations that account for individual contact
patterns. A typical local media function takes the form:

fi,t = 1−m

∑
j∈N(i) xj,t

|N(i)|
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where N(i) represents the neighbors of individual i and xj,t indicates the infection status of
individual j at time t. This formulation captures how individuals respond to infection prevalence
in their immediate social environment, which often proves more influential than global media
coverage.

The choice of media function significantly affects model predictions and policy implications.
[6] and [13] conducted systematic comparisons across functional forms, concluding that linear
functions often provide the best balance between mathematical tractability and realistic epidemic
effects, though the optimal choice depends on specific modeling objectives and available data
for validation.

6 Intervention Effectiveness

Understanding the effectiveness of different intervention strategies represents a crucial applica-
tion of epidemic models with social and media effects. The literature provides important insights
into how social dynamics affect intervention outcomes and how interventions can be optimized
to account for behavioral responses.

6.1 Social Distancing Interventions

Social distancing represents one of the most commonly studied interventions in epidemic models
with social dynamics. The effectiveness of social distancing depends not only on the biologi-
cal effects of reduced contact but also on the social and psychological factors that determine
compliance and sustainability.

[28] provided crucial insights into social distancing effectiveness, finding that such interven-
tions must exceed critical thresholds of implementation and compliance to be effective. Their
analysis revealed that poorly implemented social distancing can be worse than no intervention
at all, as it may create false confidence without sufficient risk reduction. This finding highlights
the importance of considering behavioral factors in intervention design.

The timing of social distancing interventions significantly affects their effectiveness. [32]
found that early implementation of awareness-driven social distancing can reduce total infec-
tions and eradication time, even when it does not significantly affect epidemic thresholds. This
suggests that timing considerations may be as important as intervention intensity.

Adaptive social distancing that responds to real-time epidemic conditions represents a more
sophisticated approach. [41] modeled contact networks that adapt based on information about
infection status, finding that such adaptive responses can effectively rescale disease infectious-
ness and improve epidemic outcomes. However, adaptive strategies require accurate, timely
information about epidemic conditions.

The heterogeneity of social distancing compliance within populations creates important chal-
lenges. [12] studied forward-looking behavioral adaptations where individuals make distancing
decisions based on anticipated future conditions. Their analysis revealed that individual-level
optimization of distancing behavior does not necessarily lead to population-level optimal out-
comes.
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6.2 Vaccination Interventions with Social Dynamics

Vaccination interventions present particular challenges when social dynamics are considered, as
vaccination decisions are often influenced by social networks, opinions about vaccine safety and
efficacy, and risk perceptions that may not align with public health recommendations.

[1] studied vaccination in the context of opinion exchanges on multiplex networks, finding
that opinion trends significantly affect vaccination uptake and epidemic thresholds. Their model
revealed that negative opinions about vaccination can spread rapidly through social networks,
potentially undermining vaccination campaigns even when vaccines are widely available.

Imitation effects in vaccination decisions create complex dynamics. [31] found that imita-
tion can increase overall vaccination coverage by encouraging uptake among initially hesitant
individuals. However, imitation can also create dangerous clusters of non-vaccinated individuals
when negative attitudes toward vaccination spread through social networks.

The spatial distribution of vaccination uptake emerges as a crucial factor. [37] studied how
local versus global information about epidemic prevalence affects vaccination decisions in social
networks. Their analysis revealed that local information about disease prevalence can be more
effective than global statistics in promoting vaccination uptake, particularly in heterogeneous
populations.

Social reinforcement in vaccination decisions can create both positive and negative feedback
loops. [26] found that social reinforcement can raise epidemic thresholds when it promotes
vaccination, but can also create polarized populations where pro- and anti-vaccine groups become
increasingly entrenched.

6.3 Information and Media Interventions

Information and media interventions aim to promote protective behaviors by improving aware-
ness and knowledge about epidemic conditions and effective protective measures. The effective-
ness of these interventions depends on multiple factors including timing, targeting, information
quality, and delivery mechanisms.

Early information interventions can be highly effective in promoting protective behaviors
before widespread disease transmission occurs. [14] found that awareness can significantly re-
duce outbreak size, with early awareness being particularly beneficial. However, their analysis
also revealed that awareness may not significantly affect epidemic thresholds, suggesting that
information interventions may be most effective as part of comprehensive strategies.

The quality and credibility of information significantly affect intervention effectiveness. [19]
studied multiple information sources and found that the relative credibility of different sources
determines their influence on behavioral changes. High-credibility sources can counteract mis-
information even with limited reach, while low-credibility sources may have minimal beneficial
effects.

Targeted information interventions that account for network structure can achieve enhanced
effectiveness. [35] studied optimal information dissemination strategies in epidemic networks,
finding that strategic targeting of influential nodes can achieve disproportionate benefits. How-
ever, optimal strategies require detailed knowledge of network structure that may not be available
in practice.
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The interaction between information interventions and other control measures creates im-
portant synergies. [22] studied how awareness diffusion interacts with vaccination in multiplex
networks, finding that information interventions can significantly enhance the effectiveness of
vaccination campaigns by increasing uptake and improving timing of vaccination decisions.

6.4 Combined and Adaptive Interventions

The complexity of epidemic dynamics in social systems suggests that combined intervention
strategies that integrate multiple approaches may be more effective than single-intervention
approaches. Additionally, adaptive strategies that adjust to changing conditions may outperform
static strategies.

Combined interventions that integrate social distancing, vaccination, and information com-
ponents can create synergistic effects that exceed the sum of individual intervention benefits.
[36] studied how awareness and preventive isolation interact in multiplex networks, finding that
combined strategies can delay outbreak onset and increase population resilience beyond what
either intervention achieves alone.

The timing and sequencing of different intervention components significantly affects overall
effectiveness. [7] found that media interventions can be more effective than direct preventative
measures under certain conditions, particularly after the main epidemic wave when media atten-
tion can prevent secondary outbreaks. This suggests that optimal intervention strategies may
involve dynamic reallocation of resources between different intervention types over the course of
an epidemic.

Adaptive interventions that respond to real-time epidemic and social conditions represent a
promising frontier. [39] studied epidemic outbreaks with adaptive prevention on complex net-
works, finding that local awareness-based adaptation can raise epidemic thresholds and improve
outcomes. However, adaptive strategies require sophisticated monitoring systems and rapid
response capabilities that may be challenging to implement in practice.

The concept of intervention portfolios that diversify across multiple strategies can provide
robustness against uncertainty. [51] studied media-driven adaptive behavior and found that
flexibility in behavioral responses can reduce disease incidence even when specific interventions
have variable effectiveness. This suggests that maintaining multiple intervention options may
be valuable even when their individual effectiveness is uncertain.

6.5 Policy Implications and Design Principles

The literature on intervention effectiveness reveals several important design principles for public
health policy in contexts where social dynamics significantly affect epidemic outcomes.

First, interventions must account for behavioral thresholds and tipping points. [28] demon-
strated that interventions below critical thresholds can be counterproductive, suggesting that
policy makers should focus on achieving sufficient intervention intensity rather than implement-
ing weak measures that create false confidence.

Second, the timing of interventions is often as important as their intensity. Early interven-
tions can prevent epidemic establishment, while late interventions may have limited effectiveness.
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[24] found that media interventions are most effective when implemented early in epidemic pro-
gression, suggesting that preparedness and rapid response capabilities are crucial.

Third, intervention strategies should account for population heterogeneity and network struc-
ture. [50] found that heterogeneous risk perception can either enhance or hinder epidemic con-
trol, suggesting that one-size-fits-all approaches may be suboptimal. Targeted interventions that
account for social network structure and population heterogeneity may achieve better outcomes
with fewer resources.

Fourth, information quality and credibility are crucial for intervention success. [10] demon-
strated that misinformation can undermine otherwise effective interventions, highlighting the
importance of maintaining high-quality, credible information sources and actively countering
misinformation.

Fifth, sustainable intervention strategies must account for fatigue and habituation effects. [7]
showed that media fatigue can create complex epidemic patterns, suggesting that intervention
strategies should be designed for long-term sustainability rather than short-term intensity.

7 Emerging Themes and Future Directions

Our comprehensive analysis of the literature reveals several emerging themes that point toward
important future research directions. These themes reflect both gaps in current understanding
and new opportunities created by technological and methodological advances.

7.1 Integration of Real-World Data

One of the most promising developments in epidemic modeling with social dynamics is the
increasing availability of real-world data on social interactions, information spread, and behav-
ioral changes. Digital trace data from social media platforms, mobile phones, and other digital
technologies provide unprecedented opportunities to validate and calibrate models.

[24] pioneered the integration of real media data into epidemic models, demonstrating that
data-driven approaches can provide more accurate predictions than purely theoretical models.
However, the integration of multiple data streams—including social media data, mobility data,
and traditional survey data—remains a significant challenge that requires new methodological
approaches.

The COVID-19 pandemic has generated massive datasets that provide natural experiments
for testing model predictions. [4] used COVID-19 data from Italy to study information-induced
behavioral changes, finding that lockdown policies created complex behavioral responses that
varied significantly across regions and time periods. These real-world validation efforts are crucial
for building confidence in model predictions and identifying areas where theoretical models may
need refinement.

Privacy and ethical considerations present important challenges for data integration. The
use of personal data for epidemic modeling raises questions about consent, privacy protection,
and potential misuse of sensitive information. Future research must develop frameworks that
balance the public health benefits of data-driven modeling with individual privacy rights and
ethical considerations.
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7.2 Polarization and Echo Chambers

The increasing polarization of societies around health-related issues, as dramatically illustrated
during the COVID-19 pandemic, highlights the need for models that can capture how social
divisions affect epidemic dynamics. Current models often assume that information spreads
uniformly through social networks, but real-world evidence suggests that information flow is
often constrained by ideological and social boundaries.

Echo chambers, where individuals are primarily exposed to information that confirms their
existing beliefs, can significantly affect both information spread and behavioral responses to epi-
demics. [11] began to address this issue by modeling competing opinions, but more sophisticated
models of polarization and echo chamber effects are needed.

Political and ideological factors increasingly influence health-related behaviors, from vaccina-
tion decisions to compliance with social distancing measures. Future models should incorporate
explicit representations of political affiliations and ideological positions to better predict and
understand these dynamics.

The role of social media algorithms in creating and maintaining echo chambers represents
an important area for future research. These algorithms often promote content that generates
engagement, which may not align with public health objectives. Models that incorporate algo-
rithmic effects on information spread could provide insights into how technology platforms affect
epidemic dynamics.

7.3 Multi-Scale and Multi-Level Modeling

Epidemic dynamics with social effects occur across multiple spatial and temporal scales, from
individual decision-making to global information flows. Current models often focus on single
scales, but the integration of multiple scales represents an important frontier.

Individual-level cognitive and psychological processes that determine risk perception and
behavioral responses are often simplified in current models. Integration of insights from behav-
ioral economics, psychology, and cognitive science could significantly improve model realism and
predictive accuracy.

Community and organizational levels represent important intermediate scales between indi-
viduals and populations. Schools, workplaces, and other organizations create structured social
environments that may have distinct dynamics. Models that explicitly represent these interme-
diate levels could provide insights into targeted intervention strategies.

Global information flows through international media and social media platforms create
dependencies between epidemic dynamics in different countries and regions. Models that capture
these global information networks could provide insights into how epidemic responses in one
location affect outcomes elsewhere.

Temporal multi-scale effects are also important, as individual behavioral changes may occur
over different timescales than epidemic processes. Models that explicitly represent multiple
temporal scales could provide more accurate predictions of epidemic dynamics and intervention
effectiveness.
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7.4 Artificial Intelligence and Machine Learning Integration

The integration of artificial intelligence and machine learning techniques with traditional epi-
demic modeling represents a rapidly growing area of research. These approaches can help address
some of the computational and analytical challenges inherent in complex social-epidemic models.

Machine learning techniques can be used to identify patterns in large-scale social media and
behavioral data that may not be apparent through traditional analysis. These patterns can then
be incorporated into mechanistic models to improve their accuracy and predictive power.

Agent-based models with learning agents represent another promising direction. [10] in-
corporated learning mechanisms into agent behavior, but more sophisticated machine learning
approaches could enable agents to adapt their behavior based on complex, multi-dimensional
information environments.

Reinforcement learning approaches could be used to identify optimal intervention strategies
in complex, dynamic environments. These approaches could help identify intervention timing
and targeting strategies that achieve maximum effectiveness given resource constraints and be-
havioral responses.

Natural language processing techniques applied to social media and traditional media data
could provide real-time indicators of public sentiment, risk perception, and behavioral intentions
that could inform both model calibration and intervention strategies.

8 A Novel Modeling Framework: Community-Based Epidemic
Models with Media and Awareness Effects

Building upon insights from comprehensive literature review, we propose a novel modeling frame-
work that addresses key gaps in current research. This framework integrates community-based
homophily with global media effects and local awareness dynamics while incorporating two epi-
demic models: an extended HeSIR model for heterogeneous populations and an extended S3I2
model with multi-dose vaccination. The framework provides a foundation for realistic modeling
of epidemic dynamics in polarized societies where information quality, community structure, and
health behaviors interact in complex ways.

8.1 Theoretical Foundation and Core Principles

Our proposed framework recognizes that modern societies are characterized by community struc-
tures where individuals preferentially interact with others sharing similar beliefs or characteris-
tics. This homophily affects disease transmission, information flow, and health decisions, creating
complex dynamics that current models often fail to capture.

The framework is built on four core principles:
Community-Based Social Structure: The population is organized into n communities

characterized by internal homophily and varying degrees of inter-community interaction. These
communities may be defined by geographic proximity, political affiliation, cultural background,
or other shared characteristics influencing social interactions and health-related decision-making.

Dual Information Sources: Information effects operate through two distinct channels:
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(i) global media effects that reach all communities uniformly but are interpreted differently
based on community trust and ideology, and (ii) local awareness effects that emerge from direct
observation of disease prevalence within social networks.

Community-Specific Risk Ideology: Each community possesses an intrinsic ideological
"riskiness" parameter that determines baseline attitudes toward health risks, protective be-
haviors, and intervention acceptance. This ideology modulates both behavioral responses and
vaccination adherence.

Simplified Behavioral Response: Communities exhibit different behavioral responses
through two main mechanisms: (i) rescaling of infectivity/susceptibility in response to informa-
tion (HeSIR extension), and (ii) rescaling of vaccination adherence based on media trust and
local awareness (S3I2 extension).

8.2 Mathematical Framework

We consider a population structured into n communities, where community i contains Ni indi-
viduals with total population N =

∑n
i=1Ni. Each community is characterized by:

• Homophily parameter hi ∈ [0, 1] determining preferential within-community interaction

• Risk ideology parameter θi ∈ [0, 1] representing baseline risk attitudes

• Media trust parameter ϕi ∈ [0, 1] determining receptiveness to global media

• Inter-community contact weights wij for i ̸= j

8.3 Extended HeSIR Model with Media and Awareness Effects

8.3.1 Model Structure

The extended HeSIR model divides each community i into susceptible (Si), infected (Ii), and
recovered (Ri) compartments. Each community has intrinsic infectivity and susceptibility pa-
rameters that are modulated by information effects.

Figure 1: Extended HeSIR model structure for community i. Transmission rate λi(t) depends
on both global media effects and local awareness.

The dynamics for community i follow:
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dSi
dt

= −λi(t)Si(t) (1)

dIi
dt

= λi(t)Si(t)− γIi(t) (2)

dRi

dt
= γIi(t) (3)

(4)

where γ is the recovery rate.

8.3.2 Force of Infection with Information Effects

The force of infection incorporates both within-community and between-community transmis-
sion, modulated by information-driven behavioral responses:

λi(t) = βi(t)

hi Ii(t)
Ni

+ (1− hi)
∑
j ̸=i

wij
Ij(t)

Nj

 (5)

The effective transmission rate is modified by information effects:

βi(t) = β0 · fmedia,i(t) · flocal,i(t) · g(θi) (6)

where:

• β0 is the baseline transmission rate

• fmedia,i(t) captures global media effects on community i

• flocal,i(t) represents local awareness effects

• g(θi) encodes community-specific risk ideology

Global Media Effects: Media influence operates uniformly across communities but is
filtered through community-specific trust:

fmedia,i(t) = 1− ϕi ·M(t) · ϵmedia (7)

where M(t) represents global media intensity, ϕi is community i’s media trust, and ϵmedia

controls the maximum behavioral response to media.
Local Awareness Effects: Communities respond to disease prevalence observed through

their social network connections:

flocal,i(t) = 1− ψi ·

hi Ii(t)
Ni

+ (1− hi)
∑
j ̸=i

wij
Ij(t)

Nj

 · ϵlocal (8)

where ψi measures community i’s sensitivity to local conditions and ϵlocal controls the max-
imum local response.
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Risk Ideology Function: The baseline risk attitude is captured by:

g(θi) = 1 + αrisk · (2θi − 1) (9)

where αrisk controls the strength of ideological effects, and θi = 0.5 represents neutral risk
attitudes.

8.4 Extended S3I2 Model with Media and Awareness Effects

8.4.1 Model Structure

The extended S3I2 model incorporates multi-dose vaccination with waning immunity across n
communities. Each community i has individuals in states: S0,i (naive), S1,i (one immunization),
S2,i (two immunizations), I1,i (infected after first immunization), and I2,i (infected after second
immunization).

Figure 2: Extended S3I2 model structure for community i. Vaccination rates ci(t) depend on
media effects and local awareness.

The dynamics for community i follow:

ds0,i
dt

= −λiρis0,i − ci(t)αis0,i + η1s1,i + η2s2,i (10)

ds1,i
dt

= −σ1λiρis1,i + ci(t)αis0,i − ci(t)(1− αi)s1,i − η1s1,i + γρ1,i (11)

ds2,i
dt

= −σ2λiρis2,i + ci(t)(1− αi)s1,i − η2s2,i + γρ2,i (12)

dρ1,i
dt

= λiρi(s0,i + σ1s1,i)− γρ1,i (13)

dρ2,i
dt

= σ2λiρis2,i − γρ2,i (14)

where sj,i = Sj,i/Ni, ρj,i = Ij,i/Ni, and ρi = ρ1,i + ρ2,i.
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8.4.2 Information-Modulated Vaccination Rate

The vaccination rate in community i is modulated by both global media effects and local aware-
ness:

ci(t) = cmax,i · hmedia,i(t) · hlocal,i(t) · v(θi) (15)

where:

• cmax,i is the maximum vaccination capacity in community i

• hmedia,i(t) captures media effects on vaccination acceptance

• hlocal,i(t) represents local awareness effects on vaccination

• v(θi) encodes community-specific vaccination ideology

Media Effects on Vaccination: Global media influences vaccination acceptance:

hmedia,i(t) = 1 + ϕi ·Mvax(t) · ϵvax,media (16)

where Mvax(t) represents pro-vaccination media intensity.
Local Awareness Effects: Communities respond to disease prevalence observed through

their social network connections:

hlocal,i(t) = 1 + ψi ·
ρnetwork,i(t)

ρnetwork,i(t) + κi
· ϵvax,local (17)

where κi is a half-saturation parameter controlling sensitivity to local prevalence, and

ρnetwork,i(t) = hiρi(t) + (1− hi)
∑
j ̸=i

wijρj(t)

Vaccination Ideology Function: Baseline vaccination attitudes:

v(θi) = max(0, 1 + αvax · (θi − 0.5)) (18)

where αvax controls ideological influence on vaccination acceptance.

8.5 Model Parameters and Data Integration

8.5.1 Community Structure Parameters

• hi: Homophily parameter from social network analysis

• wij : Inter-community contact weights from social/census/mobility data

• θi: Risk ideology from political/cultural surveys

• ϕi: Media trust from media consumption surveys
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8.5.2 Information Effect Parameters

• M(t),Mvax(t): Media intensity from content analysis

• ϵmedia, ϵlocal, ϵvax,media, ϵvax,local: Response strengths from behavioral studies

• ψi: Local sensitivity from community-specific surveys

8.5.3 Epidemiological Parameters

• β0, γ, µ: Standard epidemiological parameters

• σ1, σ2: Vaccine efficacy parameters

• η1, η2: Waning immunity rates

• αi: Vaccination priority parameters

8.6 Model Extensions and Applications

8.6.1 Possible Extensions

The framework can be extended to include:

• Symptomatic-Asymptomatic Distinction: Separate compartments for symptomatic
and asymptomatic infections with different transmission rates and behavioral responses

• Age and Spatial Structure: Age-stratified communities with age-specific parameters
and geographic embedding of communities with distance-dependent interactions

• Dynamic Networks: Time-varying contact patterns and community membership

• Competing Epidemics/Information Cascades: Multiple simultaneous threats, whether
biological (e.g. two or more co-circulating pathogens) or social (e.g. rival political narra-
tives), possibly driving conflicting behavioral responses

• Economic, Policy & Resource Feedback Loops: Embedding economic shocks and
policy-making as endogenous elements in epidemic–behavior models, while explicitly ac-
counting for global heterogeneity in wealth and governance capacity

More generally, continual enhancement of our socio-epidemiological frameworks will enable us to
design adaptive, equitable interventions that not only curb future pandemics but also strengthen
the social and economic resilience of communities worldwide. By fusing real-time data streams,
participatory modeling, and advanced computational analytics with insights from public health
and the social sciences, we can anticipate emerging threats, tailor responses to diverse local and
global contexts, and build sustainable, connected systems capable of withstanding tomorrow’s
challenges.
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8.6.2 Policy Applications

The framework supports analysis of:

• Targeted Interventions: Optimal allocation of resources across communities based on
risk ideology and network position

• Information Campaigns: Design of media strategies accounting for community-specific
trust and responsiveness

• Vaccination Strategies: Priority schemes considering both epidemiological risk and
community acceptance

• Behavioral Interventions: Policies to enhance protective behaviors while respecting
community values

9 Discussion and Implications

Our comprehensive survey of epidemic diffusion models with social and media effects reveals a
rapidly evolving field that has made significant progress in understanding the complex interac-
tions between disease transmission and social dynamics. The integration of these factors into
epidemic models represents a fundamental shift from traditional epidemiological approaches to-
ward more holistic frameworks that recognize the inherently social nature of epidemic processes.

9.1 Key Insights from the Literature

Several key insights emerge from our analysis of ∼ 50 representative studies in this field. First,
information-behavior feedback mechanisms are central to understanding epidemic dynamics in
social contexts. The literature consistently demonstrates that individuals modify their behavior
based on available information, but that these behavioral changes can also influence information
availability and quality, creating complex feedback loops that can either enhance or undermine
epidemic control efforts.

Second, network topology and social structure have profound effects on both disease and
information spread. The choice of network model—whether scale-free, small-world, or multi-
plex—significantly affects model predictions and policy implications. Importantly, the networks
through which diseases spread may differ from those through which information spreads, creating
additional complexity that must be carefully considered in model development.

Third, media effects are highly context-dependent and can either enhance or hinder epidemic
control efforts. The quality of information, timing of media interventions, and credibility of
information sources all critically determine outcomes. The literature reveals that even well-
intentioned media campaigns can backfire if they fail to account for social and psychological
factors that govern information processing and behavioral response.

Fourth, intervention effectiveness depends not only on biological and epidemiological factors
but also on social dynamics, behavioral thresholds, and the quality of available information. In-
terventions that appear effective in traditional epidemiological models may fail in social contexts
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if they do not achieve sufficient behavioral compliance or if they are undermined by misinfor-
mation or social resistance.

9.2 Methodological Contributions and Limitations

The methodological diversity revealed in our survey reflects both the richness of the field and
the challenges inherent in modeling complex social-epidemic systems. Network-based models
provide intuitive representations of contact and information spread but may be computationally
intensive and require detailed knowledge of network structure. Mean-field models offer analytical
tractability but may miss important heterogeneity effects. Agent-based models can capture
detailed individual behaviors but may be difficult to validate and analyze systematically.

The increasing adoption of hybrid and multiplex approaches reflects recognition that no single
methodological framework can capture all relevant aspects of social-epidemic dynamics. How-
ever, this methodological diversity also creates challenges for comparing results across studies
and building cumulative knowledge in the field.

Data availability and quality represent ongoing challenges for the field. While digital tech-
nologies have created unprecedented opportunities for data collection, issues of privacy, rep-
resentativeness, and data quality remain significant concerns. The integration of multiple
data sources—social media, mobility data, traditional surveys—requires new methodological
approaches that can account for different data types and potential biases.

9.3 Policy Implications

The research surveyed in this paper has important implications for public health policy and
epidemic preparedness. Traditional approaches to epidemic control that focus primarily on
biological and medical interventions must be supplemented with strategies that account for
social dynamics and behavioral responses.

Information and communication strategies emerge as critical components of epidemic con-
trol efforts. However, the literature reveals that simple information dissemination is insufficient;
successful strategies must account for information quality, source credibility, timing, and the
social networks through which information spreads. The rise of misinformation and disinfor-
mation campaigns creates additional challenges that require proactive strategies to maintain
information quality and public trust.

Intervention design must account for behavioral thresholds and social dynamics. Interven-
tions that fall below critical thresholds of implementation or compliance may be ineffective or
even counterproductive. This suggests that policymakers should focus on achieving sufficient
intervention intensity rather than implementing weak measures that may create false confidence.

The heterogeneity of populations and communities requires tailored approaches rather than
one-size-fits-all strategies. Different communities may respond differently to the same interven-
tions due to differences in social structure, information sources, risk perceptions, and cultural
factors. Effective epidemic control strategies must account for this heterogeneity and may require
community-specific approaches.
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9.4 Limitations and Future Research Needs

Despite significant progress, several important limitations and research needs remain in the field
of epidemic modeling with social and media effects.

First, the integration of real-world data remains challenging. While digital technologies
provide unprecedented data collection opportunities, translating these data into model param-
eters and validation remains complex. Issues of data quality, representativeness, and privacy
protection require ongoing attention.

Second, the modeling of polarization and echo chamber effects requires further development.
The increasing polarization of societies around health-related issues, as demonstrated during the
COVID-19 pandemic, highlights the need for models that can capture how social divisions affect
epidemic dynamics. Current models often assume uniform information spread, but real-world
evidence suggests that information flow is often constrained by ideological and social boundaries.

Third, multi-scale modeling that integrates individual, community, and population-level pro-
cesses remains underdeveloped. Epidemic dynamics occur across multiple spatial and temporal
scales, but most current models focus on single scales. The development of truly multi-scale
models that can capture interactions across scales represents an important frontier.

Fourth, the integration of artificial intelligence and machine learning techniques with tra-
ditional epidemic modeling offers significant opportunities but remains in early stages. These
approaches could help address computational challenges, identify patterns in complex data, and
optimize intervention strategies.

9.5 The Proposed Framework’s Contributions

Our proposed framework for community-based epidemic modeling with data-informed media
effects addresses several of these limitations. By explicitly incorporating community structure
and homophily, the framework can capture polarization effects and echo chambers that are
increasingly important in modern societies. The integration of multiple data sources enables
more realistic parameterization and validation.

The framework’s explicit treatment of both global and community-specific media effects pro-
vides a more nuanced understanding of how information interventions affect different population
segments. This capability is particularly important in polarized societies where different com-
munities may have fundamentally different relationships with information sources and public
health authorities.

The mathematical formulation enables systematic analysis of intervention strategies and their
effectiveness across different community structures and media environments. This analytical
capability can inform policy decisions and help optimize resource allocation across communities
and intervention types.

However, the proposed framework also has limitations that require acknowledgment. The
computational complexity increases significantly with the number of communities and data
sources considered. The framework requires extensive data that may not be available in all
contexts. The assumption of discrete communities may not capture the more continuous nature
of social organization in some contexts.

28



9.6 Broader Implications for Public Health

The research surveyed in this paper has implications that extend beyond epidemic modeling to
broader questions of public health communication, health behavior change, and health equity.
The recognition that social dynamics fundamentally shape health outcomes suggests that public
health interventions must account for social context to be maximally effective.

The role of trust in public health institutions emerges as a critical factor. Communities with
low trust in public health authorities may require different communication strategies and may
be more susceptible to misinformation. Building and maintaining trust represents a long-term
investment that can significantly affect the effectiveness of future epidemic responses.

Health equity considerations are also important. Communities with different social struc-
tures, information access, and relationships with public health authorities may experience dif-
ferent epidemic outcomes even when exposed to the same biological risks. Understanding and
addressing these social determinants of epidemic risk represents an important public health
priority.

The COVID-19 pandemic has demonstrated that epidemic responses are not purely technical
problems but are fundamentally social and political processes. The integration of social dynamics
into epidemic modeling represents progress toward more realistic and effective approaches to
epidemic preparedness and response.

10 Conclusion

This comprehensive survey of epidemic diffusion models with social and media effects reveals a
field that has made significant progress in understanding the complex interactions between dis-
ease transmission and social dynamics. Through our analysis of a set of representative studies,
we have identified key insights about information-behavior feedback mechanisms, network ef-
fects, media influences, and intervention effectiveness that have important implications for both
research and policy.

The methodological diversity of the field reflects both its richness and the challenges in-
herent in modeling complex social-epidemic systems. Network-based, mean-field, agent-based,
and multiplex approaches each contribute unique insights, with hybrid approaches increasingly
recognized as necessary to capture the full complexity of these systems.

Key findings from the literature include the central importance of information-behavior feed-
back loops, the profound effects of network topology on both disease and information spread, the
context-dependent nature of media effects, and the critical role of social dynamics in determining
intervention effectiveness. These insights challenge traditional epidemiological approaches and
highlight the need for more integrated frameworks that account for social factors.

Our proposed framework for community-based epidemic modeling with data-informed media
effects addresses several gaps in the current literature by explicitly incorporating community
structure, homophily, and differential media effects. This framework provides a foundation for
more realistic modeling of epidemic dynamics in polarized societies while enabling systematic
analysis of intervention strategies.

The implications of this research extend far beyond academic interest to fundamental ques-
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tions of public health policy, epidemic preparedness, and health equity. The COVID-19 pan-
demic has demonstrated that effective epidemic responses must account for social dynamics,
information quality, and community differences to be successful.

Future research should focus on several key areas: better integration of real-world data,
development of models that capture polarization and echo chamber effects, advancement of
multi-scale modeling approaches, and integration of artificial intelligence techniques. These
developments will enhance our ability to understand and respond to future epidemic threats.

The field of epidemic modeling with social and media effects represents a crucial frontier
in public health research. As societies become increasingly connected yet polarized, and as
information environments become more complex, the need for sophisticated models that can
capture these dynamics will only increase. The research surveyed in this paper provides a
foundation for continued progress in this critical area.

The ultimate goal of this research is to improve public health outcomes by developing more
effective and equitable epidemic control strategies. By understanding how social dynamics shape
epidemic outcomes, we can design interventions that work with rather than against social forces,
ultimately protecting population health more effectively. This represents not just a scientific
advance but a moral imperative to develop approaches that can protect all members of society,
regardless of their social position or community affiliation.

As we face future epidemic threats, the integration of social dynamics into epidemic modeling
will be essential for developing effective, equitable, and sustainable responses. The research
surveyed in this paper provides important building blocks for this effort, while our proposed
framework offers a path forward for continued progress in this vital field.

References

[1] Lucila G. Alvarez-Zuzek, Cristian E. La Rocca, José R. Iglesias, and Lidia A. Braunstein.
Epidemic spreading in multiplex networks influenced by opinion exchanges on vaccination.
PLOS ONE, 12(11):e0186492, nov 9 2017.

[2] Marco A. Amaral, Marcelo M. de Oliveira, and Marco A. Javarone. An epidemiologi-
cal model with voluntary quarantine strategies governed by evolutionary game dynamics.
Chaos, Solitons &amp; Fractals, 143:110616, 2 2021.

[3] Henri Berestycki, Benoît Desjardins, Joshua S. Weitz, and Jean-Marc Oury. Epidemic
modeling with heterogeneity and social diffusion. Journal of Mathematical Biology, 86(4),
mar 25 2023.

[4] Bruno Buonomo and Rossella Della Marca. Effects of information-induced behavioural
changes during the COVID-19 lockdowns: the case of Italy. Royal Society Open Science,
7(10):201635, 10 2020.

[5] Xiaolong Chen, Kai Gong, Ruijie Wang, Shimin Cai, and Wei Wang. Effects of heteroge-
neous self-protection awareness on resource-epidemic coevolution dynamics. Applied Math-
ematics and computation, 385:125428, 2020.

30



[6] Shannon Collinson and Jane M Heffernan. Modelling the effects of media during an influenza
epidemic. BMC public health, 14:1–10, 2014.

[7] Shannon Collinson, Kamran Khan, and Jane M. Heffernan. The Effects of Media Reports on
Disease Spread and Important Public Health Measurements. PLOS ONE, 10(11):e0141423,
nov 3 2015.

[8] Jingan Cui, Yonghong Sun, and Huaiping Zhu. The impact of media on the control of
infectious diseases. Journal of dynamics and differential equations, 20(1):31–53, 2008.

[9] Paulo Cesar Ventura da Silva, Fátima Velásquez-Rojas, Colm Connaughton, Federico
Vazquez, Yamir Moreno, and Francisco A. Rodrigues. Epidemic spreading with aware-
ness and different timescales in multiplex networks. Physical Review E, 100(3), sep 24
2019.

[10] Erhu Du, Eddie Chen, Ji Liu, and Chunmiao Zheng. How do social media and individual
behaviors affect epidemic transmission and control? Science of The Total Environment,
761:144114, 3 2021.

[11] Fanshu Fang, Jing Ma, and Yanli Li. The coevolution of the spread of a disease and
competing opinions in multiplex networks. Chaos, Solitons &amp; Fractals, 170:113376, 5
2023.

[12] Lorenzo Amir Nemati Fard, Alberto Bisin, Michele Starnini, and Michele Tizzoni. Modeling
adaptive forward-looking behavior in epidemics on networks. Journal of Economic Behavior
& Organization, 232:106914, 2025.

[13] Anna D Fome, Herieth Rwezaura, Mamadou L Diagne, Shannon Collinson, and Jean M
Tchuenche. A deterministic susceptible–infected–recovered model for studying the impact
of media on epidemic dynamics. Healthcare Analytics, 3:100189, 2023.

[14] Sebastian Funk, Erez Gilad, Chris Watkins, and Vincent A. A. Jansen. The spread of
awareness and its impact on epidemic outbreaks. Proceedings of the National Academy of
Sciences, 106(16):6872–6877, apr 21 2009.

[15] Carlo Giambiagi Ferrari, Juan Pablo Pinasco, and Nicolas Saintier. Coupling Epidemi-
ological Models with Social Dynamics. Bulletin of Mathematical Biology, 83(7), may 18
2021.

[16] Clara Granell, Sergio Gómez, and Alex Arenas. Dynamical Interplay between Awareness
and Epidemic Spreading in Multiplex Networks. Physical Review Letters, 111(12), sep 17
2013.

[17] Semra Gündüç. A study on the effects of diffusion of information on epidemic spread.
International Journal of Modeling, Simulation, and Scientific Computing, 10(03):1950015,
6 2019.

31



[18] Quantong Guo, Yanjun Lei, Xin Jiang, Yifang Ma, Guanying Huo, and Zhiming Zheng.
Epidemic spreading with activity-driven awareness diffusion on multiplex network. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 26(4), 2016.

[19] Vasilis Hatzopoulos, Michael Taylor, Péter L. Simon, and Istvan Z. Kiss. Multiple sources
and routes of information transmission: Implications for epidemic dynamics. Mathematical
Biosciences, 231(2):197–209, 6 2011.

[20] Xiao Hong, Yuexing Han, Gouhei Tanaka, and Bing Wang. Co-evolution dynamics of epi-
demic and information under dynamical multi-source information and behavioral responses.
Knowledge-Based Systems, 252:109413, 2022.

[21] He Huang, Yahong Chen, and Zhijun Yan. Impacts of social distancing on the spread of in-
fectious diseases with asymptomatic infection: a mathematical model. Applied Mathematics
and Computation, 398:125983, 2021.

[22] Jia-Qian Kan and Hai-Feng Zhang. Effects of awareness diffusion and self-initiated aware-
ness behavior on epidemic spreading - An approach based on multiplex networks. Commu-
nications in Nonlinear Science and Numerical Simulation, 44:193–203, 3 2017.

[23] Alexander Karaivanov. A social network model of COVID-19. PLOS ONE, 15(10):e0240878,
oct 29 2020.

[24] Louis Kim, Shannon M. Fast, and Natasha Markuzon. Incorporating media data into a
model of infectious disease transmission. PLOS ONE, 14(2):e0197646, feb 4 2019.

[25] Lijin Liu, Meiling Feng, Chengyi Xia, Dawei Zhao, and Matjaž Perc. Epidemic trajectories
and awareness diffusion among unequals in simplicial complexes. Chaos, Solitons &amp;
Fractals, 173:113657, 8 2023.

[26] Quan-Hui Liu, Wei Wang, Ming Tang, and Hai-Feng Zhang. Impacts of complex behavioral
responses on asymmetric interacting spreading dynamics in multiplex networks. Scientific
Reports, 6(1), may 9 2016.

[27] Weicai Ma, Peng Zhang, Xin Zhao, and Leyang Xue. The coupled dynamics of informa-
tion dissemination and SEIR-based epidemic spreading in multiplex networks. Physica A:
Statistical Mechanics and its Applications, 588:126558, 2 2022.

[28] Savi Maharaj and Adam Kleczkowski. Controlling epidemic spread by social distancing:
Do it well or not at all. BMC Public Health, 12(1), aug 20 2012.

[29] Lía Mayorga, Clara García Samartino, Gabriel Flores, Sofía Masuelli, María V Sánchez,
Luis S Mayorga, and Cristián G Sánchez. Detection and isolation of asymptomatic individ-
uals can make the difference in covid-19 epidemic management. Medrxiv, pages 2020–04,
2020.

[30] Lewis Mitchell and Joshua V Ross. A data-driven model for influenza transmission incor-
porating media effects. Royal Society open science, 3(10):160481, 2016.

32



[31] Martial L. Ndeffo Mbah, Jingzhou Liu, Chris T. Bauch, Yonas I. Tekel, Jan Medlock,
Lauren Ancel Meyers, and Alison P. Galvani. The Impact of Imitation on Vaccination
Behavior in Social Contact Networks. PLoS Computational Biology, 8(4):e1002469, apr 12
2012.

[32] Keith Paarporn, Ceyhun Eksin, Joshua S. Weitz, and Jeff S. Shamma. Networked SIS
Epidemics With Awareness. IEEE Transactions on Computational Social Systems, 4(3):93–
103, 9 2017.

[33] Piero Poletti, Bruno Caprile, Marco Ajelli, Andrea Pugliese, and Stefano Merler. Spon-
taneous behavioural changes in response to epidemics. Journal of theoretical biology,
260(1):31–40, 2009.

[34] Hazhir Rahmandad and John Sterman. Heterogeneity and Network Structure in the Dy-
namics of Diffusion: Comparing Agent-Based and Differential Equation Models. SSRN
Electronic Journal, 2004.

[35] Faryad Darabi Sahneh and Caterina M. Scoglio. Optimal information dissemination in
epidemic networks. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
IEEE, 12 2012.

[36] Marialisa Scatà, Alessandro Di Stefano, Pietro Liò, and Aurelio La Corte. The Impact
of Heterogeneity and Awareness in Modeling Epidemic Spreading on Multiplex Networks.
Scientific Reports, 6(1), nov 16 2016.

[37] Anupama Sharma, Shakti N. Menon, V. Sasidevan, and Sitabhra Sinha. Epidemic preva-
lence information on social networks can mediate emergent collective outcomes in voluntary
vaccine schemes. PLOS Computational Biology, 15(5):e1006977, may 23 2019.

[38] Xiangyun Shi, Xiwen Gao, Xueyong Zhou, and Yongfeng Li. Analysis of an sqeiar epidemic
model with media coverage and asymptomatic infection. AIMS Math, 6(11):12298–12320,
2021.

[39] Diogo H. Silva, Celia Anteneodo, and Silvio C. Ferreira. Epidemic outbreaks with adaptive
prevention on complex networks. Communications in Nonlinear Science and Numerical
Simulation, 116:106877, 1 2023.

[40] Jean M Tchuenche, Nothabo Dube, Claver P Bhunu, Robert J Smith, and Chris T Bauch.
The impact of media coverage on the transmission dynamics of human influenza. BMC
public health, 11:1–14, 2011.

[41] Sven Van Segbroeck, Francisco C. Santos, and Jorge M. Pacheco. Adaptive Contact Net-
works Change Effective Disease Infectiousness and Dynamics. PLoS Computational Biology,
6(8):e1000895, aug 19 2010.

[42] Fátima Velásquez-Rojas and Federico Vazquez. Interacting opinion and disease dynamics
in multiplex networks: Discontinuous phase transition and nonmonotonic consensus times.
Physical Review E, 95(5), may 22 2017.

33



[43] Huan Wang, Chuang Ma, Han-Shuang Chen, and Hai-Feng Zhang. Effects of asymptomatic
infection and self-initiated awareness on the coupled disease-awareness dynamics in multi-
plex networks. Applied Mathematics and Computation, 400:126084, 2021.

[44] Yi Wang, Jinde Cao, Zhen Jin, Haifeng Zhang, and Gui-Quan Sun. Impact of media
coverage on epidemic spreading in complex networks. Physica A: Statistical Mechanics and
its Applications, 392(23):5824–5835, 12 2013.

[45] Zhishuang Wang and Chengyi Xia. Co-evolution spreading of multiple information and
epidemics on two-layered networks under the influence of mass media. Nonlinear Dynamics,
102(4):3039–3052, nov 2 2020.

[46] Bingjie Wu et al. The influence of different government policies on the co-evolution of infor-
mation dissemination, vaccination behavior and disease transmission in multilayer networks.
Chaos, Solitons & Fractals, 180:114522, 2024.

[47] Jiang Wu, Renxian Zuo, Chaocheng He, Hang Xiong, Kang Zhao, and Zhongyi Hu. The
effect of information literacy heterogeneity on epidemic spreading in information and epi-
demic coupled multiplex networks. Physica A: Statistical Mechanics and its Applications,
596:127119, 2022.

[48] Dongmei Xiao and Shigui Ruan. Global analysis of an epidemic model with nonmonotone
incidence rate. Mathematical biosciences, 208(2):419–429, 2007.

[49] Xiaoxiao Xie and Liang’an Huo. Co-evolution dynamics between information and epidemic
with asymmetric activity levels and community structure in time-varying multiplex net-
works. Chaos, Solitons &amp; Fractals, 181:114586, 4 2024.

[50] Yang Ye, Qingpeng Zhang, Zhongyuan Ruan, Zhidong Cao, Qi Xuan, and Daniel Dajun
Zeng. Effect of heterogeneous risk perception on information diffusion, behavior change,
and disease transmission. Physical Review E, 102(4), oct 30 2020.

[51] Zhiyuan Yu, David Gurarie, and Qimin Huang. Media-driven adaptive behavior in pandemic
modeling and data analysis. medRxiv, apr 19 2024.

34


	Introduction
	Methodological Landscape
	Network-Based Models
	Mean-Field Models
	Agent-Based Models
	Hybrid and Multiplex Approaches
	Social Media and Information Quality Models

	Information-Behavior Feedback Mechanisms
	Types of Information-Behavior Feedback
	Behavioral Thresholds and Tipping Points
	The Role of Risk Perception
	Temporal Dynamics of Information-Behavior Coupling
	Asymptomatic Transmission and Information Dynamics

	Network Dynamics and Social Influence
	Network Topology Effects
	Adaptive Network Dynamics
	Social Influence Mechanisms
	Community Structure and Homophily
	Awareness Diffusion Mechanisms

	Media Effects and Information Quality
	Traditional Media vs. Social Media
	Information Quality and Misinformation
	Media Fatigue and Temporal Effects
	Targeted vs. Broadcast Media Strategies
	Media Function Formulations

	Intervention Effectiveness
	Social Distancing Interventions
	Vaccination Interventions with Social Dynamics
	Information and Media Interventions
	Combined and Adaptive Interventions
	Policy Implications and Design Principles

	Emerging Themes and Future Directions
	Integration of Real-World Data
	Polarization and Echo Chambers
	Multi-Scale and Multi-Level Modeling
	Artificial Intelligence and Machine Learning Integration

	A Novel Modeling Framework: Community-Based Epidemic Models with Media and Awareness Effects
	Theoretical Foundation and Core Principles
	Mathematical Framework
	Extended HeSIR Model with Media and Awareness Effects
	Model Structure
	Force of Infection with Information Effects

	Extended S3I2 Model with Media and Awareness Effects
	Model Structure
	Information-Modulated Vaccination Rate

	Model Parameters and Data Integration
	Community Structure Parameters
	Information Effect Parameters
	Epidemiological Parameters

	Model Extensions and Applications
	Possible Extensions
	Policy Applications


	Discussion and Implications
	Key Insights from the Literature
	Methodological Contributions and Limitations
	Policy Implications
	Limitations and Future Research Needs
	The Proposed Framework's Contributions
	Broader Implications for Public Health

	Conclusion

